skip to main content


Search for: All records

Creators/Authors contains: "Pál, András"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Extreme debris discs are characterized by unusually strong mid-infrared excess emission, which often proves to be variable. The warm dust in these discs is of transient nature and is likely related to a recent giant collision occurring close to the star in the terrestrial region. Here we present the results of a 877 d long, gap-free photometric monitoring performed by the Spitzer Space Telescope of the recently discovered extreme debris disc around TYC 4209-1322-1. By combining these observations with other time-domain optical and mid-infrared data, we explore the disc variability of the last four decades with particular emphasis on the last 12 yr. During the latter interval the disc showed substantial changes, the most significant was the brightening and subsequent fading between 2014 and 2018 as outlined in WISE data. The Spitzer light curves outline the fading phase and a subsequent new brightening of the disc after 2018, revealing an additional flux modulation with a period of ∼39 d on top of the long-term trend. We found that all these variations can be interpreted as the outcome of a giant collision that happened at an orbital radius of ∼0.3 au sometime in 2014. Our analysis implies that a collision on a similar scale could have taken place around 2010, too. The fact that the disc was already peculiarly dust rich 40 yr ago, as implied by IRAS data, suggests that these dust production events belong to a chain of large impacts triggered by an earlier even more catastrophic collision.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract We present the 30 minutes cadence Kepler/K2 light curve of the Type Ia supernova (SN Ia) SN 2018agk, covering approximately one week before explosion, the full rise phase, and the decline until 40 days after peak. We additionally present ground-based observations in multiple bands within the same time range, including the 1 day cadence DECam observations within the first ∼5 days after the first light. The Kepler early light curve is fully consistent with a single power-law rise, without evidence of any bump feature. We compare SN 2018agk with a sample of other SNe Ia without early excess flux from the literature. We find that SNe Ia without excess flux have slowly evolving early colors in a narrow range ( g − i ≈ −0.20 ± 0.20 mag) within the first ∼10 days. On the other hand, among SNe Ia detected with excess, SN 2017cbv and SN 2018oh tend to be bluer, while iPTF16abc’s evolution is similar to normal SNe Ia without excess in g − i . We further compare the Kepler light curve of SN 2018agk with companion-interaction models, and rule out the existence of a typical nondegenerate companion undergoing Roche lobe overflow at viewing angles smaller than 45°. 
    more » « less